Math 216: Statistical Thinking
When samples cannot be paired, they are treated as independent. For two independent samples:
Conditions to Check:
For \(\bar{X}_1 - \bar{X}_2\):
Expected Value: \(E(\bar{X}_1 - \bar{X}_2) = \mu_1 - \mu_2\)
Standard Error:
\[\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{ \underbrace{\frac{\sigma_1^2}{n_1}}_{\text{Group 1 variability}} + \underbrace{\frac{\sigma_2^2}{n_2}}_{\text{Group 2 variability}}}\]
Distribution Shape:
Used when assuming equal population variances (\(\sigma_1^2 = \sigma_2^2\)):
\[s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}\]
Component | Meaning |
---|---|
\((n_1-1)s_1^2\) | Scaled variability from Group 1 |
\((n_2-1)s_2^2\) | Scaled variability from Group 2 |
Denominator | Total degrees of freedom |
Case 1: Equal Variances (Pooled) \[t = \frac{\bar{x}_1 - \bar{x}_2}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\] \[s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}\] \[df = n_1 + n_2 - 2\]
Case 2: Unequal Variances (Welch) \[t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}\] \[df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1-1} + \frac{(s_2^2/n_2)^2}{n_2-1}}\]
\[(\bar{x}_1 - \bar{x}_2) \pm t^*_{\alpha/2} \cdot SE\]
Pooled Variance CI: \[SE = s_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\]
Welch’s CI: \[SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\]
“With 95% confidence, the true mean difference lies between [−3.2, 5.8]. As this interval contains 0, we cannot reject the null hypothesis at α=0.05.”