Math 216: Statistical Thinking
Context of Binomial Experiments:
Essential Features:
\[ P(x) = \binom{n}{x} p^x q^{n-x}, \quad x = 0, 1, 2, \ldots, n \]
Refer to Activity 3. Use the formula for a binomial random variable to find the probability distribution of \(x\), where \(x\) is the number of adults who pass the fitness test.
\[\begin{align*} \begin{aligned} & p(0)=\frac{4!}{0!(4-0)!}(.1)^0(.9)^{4-0}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(1)(4 \cdot 3 \cdot 2 \cdot 1)}(.1)^0(.9)^4=1(.1)^0(.9)^4=.6561 \\ & p(1)=\frac{4!}{1!(4-1)!}(.1)^1(.9)^{4-1}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(1)(3 \cdot 2 \cdot 1)}(.1)^1(.9)^3=4(.1)(.9)^3=.2916 \\ & p(2)=\frac{4!}{2!(4-2)!}(.1)^2(.9)^{4-2}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(2 \cdot 1)}(.1)^2(.9)^2=6(.1)^2(.9)^2=.0486 \\ & p(3)=\frac{4!}{3!(4-3)!}(.1)^3(.9)^{4-3}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(1)}(.1)^3(.9)^1=4(.1)^3(.9)=.0036 \\ & p(4)=\frac{4!}{4!(4-4)!}(.1)^4(.9)^{4-4}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(1)}(.1)^4(.9)^0=1(.1)^4(.9)=.0001 \end{aligned} \end{align*}\]
Based on the above result, what is \(P(X<3), P(X \geq 2), P(1 \leq X<3)\)?
As \(n\) increases, the binomial distribution approximates a bell-shaped curve.
Statistical Properties:
Insights: