graph TD A[Start] --> B{σ known?} B -->|Yes| C["Use z-test/z-interval"] B -->|No| D{n ≥ 30?} D -->|Yes| E["CLT: Use t-test (z ≈ t)"] D -->|No| F["Normal? QQ-plot/test"] F -->|Yes| G[Use t-test] F -->|No| H[Non-parametric test]
Activity 25
MATH 216: Statistical Thinking
One-Sample Inference Activity: t-test & z-test
Review & Flowchart
Key concepts:
Confidence Interval (CI):
\(\bar{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\) (unknown \(\sigma\))
\(\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\) (known \(\sigma\))
Hypothesis test flow:
Activity 1: CI for Small Sample (Unknown σ)
Problem: Construct 95% CI for blood pressure increase (n=6).
Data: 1.7, 3.0, 0.8, 3.4, 2.7, 2.1
Activity 2: Hypothesis Test (Unknown σ, Moderate n)
Problem: Test if pH ≠ 8.5 (α=0.05, n=17, \(\bar{x}=8.42\), \(s=0.16\)).
Activity 3: Known σ (z-test)
Problem: Bolts have σ=0.15 cm. Sample (n=20): \(\bar{x}=5.08\) cm. Test if μ≠5.
Activity 4: Large Sample Approximation
Problem: Commute time (n=50, \(\bar{x}=35\), s=8). Test if \(\mu \neq 30\).
Tasks: